Selasa, 31 Desember 2013

RADIKAL BEBAS

            
              
RADIKAL BEBAS
NAMA:YULVIAWATI.N
NIM : F1C111058
PRODI : KIMIA S1
TUGAS : KIMIA ORGANIK FISIK

pengertian radikal bebas adalah ??
                    Radikal bebas adalah molekul yang kehilangan satu buah elektron dari pasangan elektron bebasnya, atau merupakan hasil pemisahan homolitik suatu ikatan kovalen. Akibat pemecahan homolitik, suatu molekul akan terpecah menjadi radikal bebas yang mempunyai elektron tak berpasangan. Elektron memerlukan pasangan untuk menyeimbangkan nilai spinnya, sehingga molekul radikal menjadi tidak stabil dan mudah sekali bereaksi dengan molekul lain, membentuk radikal baru. Radikal bebas dapat dihasilkan dari hasil metabolisme tubuh dan faktor eksternal seperti asap rokok, hasil penyinaran ultra violet, zat pemicu radikal dalam makanan dan polutan lain. Penyakit yang disebabkan oleh radikal bebas bersifat kronis, yaitu dibutuhkan waktu bertahun-tahun untuk penyakit tersebut menjadi nyata. Contoh penyakit yang sering dihubungkan dengan radikal bebas adalah serangan jantung,kankerkatarak dan menurunnya fungsi ginjal. Untuk mencegah atau mengurangi penyakit kronis karena radikal bebas diperlukan antioksidan.
Tubuh manusia dapat menetralisir radikal bebas ini, hanya saja bila jumlahnya berlebihan, maka kemampuan untuk menetralisirnya akan semakin berkurang. Merokok, misalnya, adalah kegiatan yang secara sengaja memasukkan berbagai jenis zat berbahaya yang dapat meningkatkan jumlah radikal bebas ke dalam tubuh
  
       Sumber radikal bebas bisa berasal dari proses metabolisme dalam tubuh (internal) dan dapat berasal dari luar tubuh (eksternal). Dari dalam tubuh mencakup superoksida (O2*), hidroksil (*OH), peroksil (ROO*), hidrogen peroksida (H2O2), singlet oksigen (1O2), oksida nitrit (NO*), dan peroksinitrit (ONOO*). Dari luar tubuh antara lain berasal dari: asap rokok, polusi, radiasi, sinar UV, obat, pestisida, limbah industri, dan ozon (Siswono, 2005).
            Aktivitas radikal bebas dapat menjadi penyebab atau mendasari berbagai keadaan patologis. Di antara senyawa-senyawa oksigen reaktif, radikal hidroksil (‘OH) merupakan senyawa yang paling berbahaya karena mempunyai tingkat reaktivitas sangat tinggi. Radikal hidroksil dapat merusak tiga jenis senyawa yang penting untuk mempertahankan integritas sel yaitu:
(1) Asam lemak tak jenuh jamak (PUFA) yang merupakan komponen penting
     fosfolipid penyusun membran sel
(2) DNA, yang merupakan piranti genetik dari sel.
(3) Protein, yang memegang berbagai peran penting seperti enzim, reseptor,
     antibodi, pembentuk matriks, dan sitoskeleton (Halliwell dan Gutteridge, 2000 ; Papas, 1999).
            Dalam rangka mendapatkan stabilitas kimia, radikal bebas tidak dapat mempertahankan bentuk asli dalam waktu lama dan segera berikatan dengan bahan sekitarnya. Radikal bebas akan menyerang molekul stabil yang terdekat dan mengambil elektron, zat yang terambil elektronnya akan menjadi radikal bebas juga sehingga akan memulai suatu reaksi berantai, yang akhirnya terjadi kerusakan sel tersebut.
        
a) Mekanisme Kerja
            Mekanisme terbentuknya radikal bebas dapat dimulai oleh banyak hal, baik yang bersifat endogen maupun eksogen. Reaksi selanjutnya adalah peroksidasi lipid membran dan sitosol yang mengakibatkan terjadinya serangkaian reduksi asam lemak sehingga terjadi kerusakan membran dan organel sel.
            Peroksidasi (otooksidasi) lipid bertanggung jawab tidak hanya pada kerusakan makanan, tapi juga menyebabkan kerusakan jaringan in vivo karena dapat menyebabkan kanker, penyakit inflamasi, aterosklerosis, dan penuaan. Efek merusak tersebut akibat produksi radikal bebas (ROO•, RO•, OH•) pada proses pembentukan peroksida dari asam lemak. Peroksidasi lipid merupakan reaksi berantai yang memberikan pasokan radikal bebas secara terus-menerus yang menginisiasi peroksidasi lebih lanjut.

b)Tipe radikal bebas dalam tubuh
            Radikal bebas terpenting dalam tubuh adalah radikal derivat dari oksigen yang disebut kelompok oksigen reaktif (reactive oxygen species/ROS), termasuk didalamnya adalah triplet (3O2), tunggal (singlet/1O2), anion superoksida (O2.-), radikal hidroksil (-OH), nitrit oksida (NO-), peroksinitrit (ONOO-), asam hipoklorus (HOCl), hidrogen peroksida (H2O2), radikal alkoxyl (LO-), dan radikal peroksil (LO-2).
Radikal bebas yang mengandung karbon (CCL3-) yang berasal dari oksidasi radikal molekul organik. Radikal yang mengandung hidrogen hasil dari penyerangan atom H  (H-). Bentuk lain adalah radikal yang mengandung sulfur yang diproduksi pada oksidasi glutation menghasilkan radikal thiyl (R-S-). Radikal yang mengandung nitrogen juga ditemukan, misalnya radikal fenyldiazine.

cara-cara mengatasi radikal bebas sebagai berikut........!!!!!
  
            cara  mengatasi  radikal  bebas  dengan Laminine sangat  ampuh  karena  didalam  laminine  terkandung  unsur-unsur   22  asam  amino, trace  minerals,  vitamins , amino  peptides  termasuk  Fibroblast Grow Factor  2  (FGF).  Struktur Molekul Laminin  Kombinasi sempurna dari kehidupan yang berasal dari tanah, laut dan tanaman. sumbernya “Miracle of Life”.  11  Studi klinis telah dilakukan yang menunjukkan dampak Positif Laminine terhadap Fisik, Mental, Kekuatan Emosional dan Kesehatan keseluruhan.  Banyak orang bersaksi bahwa Laminine memberikan mereka perubahan nyata hanya dalam waktu 48 jam



Radikal bebas adalah molekul yang kehilangan elektron, sehingga molekul tersebut menjadi tidak stabil dan selalu berusaha mengambil elektron dari molekul atau sel lain. Pada waktu kita bernapas (hasil samping proses oksidasi atau pembakaran) Olahraga yang berlebihan. Jika terjadi peradangan Terpapar polusi lingkungan (asap rokok, kendaraan bermotor, radiasi), dll


Aterosklerosis (penyempitan pembuluh darah)
Penuaan (Aging)
Penyakit neurodegeneratif (Alzheimer Disease, Dementia/pikun, dll)
Penyakit / gangguan paru, hati & ginjal Katarak, dll

Antioksidan Primer : Berfungsi mencegah pembentukan radikal bebas, misalnya Transferin, Feritin, albumin.
Antioksidan Sekunder : Berfungsi menangkap radikal bebas dan menghentikan pembentukan radikal bebas, misalnya Superoxide Dismutase (SOD), Glutathion Peroxidase (GPx), Vitamin C, Vitamin E, B-Caroten, dll.
Antioksidan Tersier atau repair enzyme : Berfungsi memperbaiki jaringan tubuh yang rusak oleh radikal bebas.
Untuk menilai daya tahan tubuh atau paerlindungan tubuh terhadap serangan radikal bebas.
Mereka yang banyak terpapar polusi lingkungan atau mereka yang rentan terhadap bahaya radikal bebas :

  • Perokok
  • Orang yang kegemukan
  • Penderita Diabetes Melitus
  • Penderita Hipertensi
  • Penderita peradangan kronis, dll.
Laminine  adalah  suplemen  alami  untuk antioksidan   yang  dapat  memerangi  radikal  bebas  dan  penyakit  yang  di sebabkan  oleh radikal  bebas  dan  banya  lagi  Manfaat  Laminine  seperti  dibawah  ini  :
Mengobati  Bronkitis dan PPOK. Angina ( angin duduk ) bronkitis kronis.
Mengobati  Penyakit Paru Obstruktif Kronik (PPOK) Influenza
Acute Respiratory  Distress  Syndrome (ARDS), HIV / AIDS. Cystic fibrosis, Emphysema
Mengobati   gejala  Asma
Mencegah kanker usus besar.
Mencegah katarak  dan  degenerasi makula
Mengobati  Kolestrol
Membantu meningkatkan kesuburan  pada orang dengan penyakit ovarium polikistik.
Membantu meningkatkan hasil pada anak-anak dengan adrenoleukodystrophy 
Otak canggih. 



   pertanyaan : Bagaimana cara kerja antioksidan yang dapat mencegah atau mentralisir radikal bebas dalam tubuh...??

jawaban :  Cara Kerja Antioksidan : yaitu dengan cara radikal bebas yang terbentuk selama oksidasi berada dalam keadaan yang sangat tidak stabil sehingga memiliki kecenderungan melepaskan elektron atau menyerap elektron dari sel.
Setiap kali sebuah elektron dilepaskan atau ditangkap oleh radikal bebas, maka akan terbentuk radikal bebas yang baru.
Radikal bebas yang baru terbentuk akan terus melakukan hal yang sama. Dengan cara ini, rantai radikal bebas tercipta.
Jika kondisi ini terus terjadi dalam waktu yang lama, sel tubuh akan menjadi rusak



Senin, 30 Desember 2013

Kontrol Kinetika dan Kontrol Termodinamika Dalam Senyawa Organik

KONTROL KINETIKA DAN KONTROL TERMODINAMIKA DALAM SENYAWA ORGANIK


Kinetika adalah suatu ilmu yang membahas tentang laju (kecepatan) dan mekanisme reaksi. Berdasarkan penelitianyang mula – mula dilakukan oleh Wilhelmy terhadap kecepatan inversi sukrosa, ternyata kecepatan reaksi berbanding lurus dengan konsentrasi / tekanan zat – zat yang bereaksi. Laju reaksi dinyatakan sebagai perubahan konsentrasi atau tekanan dari produk atau reaktan terhadap waktu.
Berdasarkan jumlah molekul yang bereaksi, reaksi terdiri atas :
1.       Reaksi unimolekular : hanya 1 mol reaktan yang bereaksi
Contoh :  N2O5   –>  N2O4  +  ½ O2
2.       Reaksi bimolekular : ada 2 mol reaktan yang bereaksi
Contoh :  2HI  –>  H2  +  I2
3.       Reaksi termolekular : ada 3 mol reaktan yang bereaksi
Contoh :  2NO  +  O2  –>  2NO2
termodinamika untuk perubahan keadaan diperlukan untuk mendeskripsikan ikatan kimia, sruktur dan reaksi. Pengetahuan termodinamika sederhana sangat bermanfaat untuk memutuskan apakah struktur suatu senyawa akan stabil, kemungkinan kespontanan reaksi, perhitungan kalor reaksi, penentuan mekanisme reaksi dan pemahaman elektrokimia.

Kontrol termodinamika atau kinetika dalam reaksi kimia dapat menentukan komposisi campuran produk reaksi ketika jalur bersaing mengarah pada produk yang berbeda serta selektivitas dari pengaruh kondisi reaksi tersebut.Kondisi reaksi seperti suhu, tekanan atau pelarut mempengaruhi jalur reaksi; maka dari itu kontrol termodinamik maupun kinetik adalah satu kesatuan dalam dalam suatu reaksi kimia.Kedua kontrol reaksi ini disebut sebagai faktor termodinamika dan faktor kinetika, dapat diuraikan sebagai berikut :
1.Faktor termodinamika (adanya stabilitas realtif dari produk)
Pada suhu tinggi, reaksi berada di bawah kendali termodinamika (ekuilibrium, kondisi reversibel) dan produk utama berada dalam sistem lebih stabil.
2.Faktor kinetik (kecepatan pembentukan produk)
Pada temperatur rendah, reaksi ini di bawah kontrol kinetik (tingkat, kondisi irreversible) dan produk utama adalah produk yang dihasilkan dari reaksi tercepat.

Ada banyak hal dalam mana suatu senyawa di bawah kondisi reaksi yang diberikan dapat mengalami reaksi kompetisi menghasilkan produk yang berbeda.
Lihat tabel persamaan berikut  :

Memperlihatkan profil energi-bebas untuk suatu reaksi dalam mana B lebih stabil secara termodinamika daripada C (ΔG lebih rendah), tapi C terbentuk lebih cepat (ΔGlebih rendah). Jika tidak ada satupun reaksi yang revesibel maka C akan terbentuk lebih banyak karena terbentuk lebih cepat. Produk tersebut dikatakan terkontrol secara kinetik (kinetically controlled). Akan tetapi, jika reaksi adalah reversibel maka hal tersebut tidak menjadi penting. jika proses dihentikan sebelum kesetimbangan tercapai maka reaksi akan dikontrol oleh kinetik karena akan lebih banyak diperoleh produk yang cepat terbentuk. Akan tetapi jika reaksi dibiarkan sampai mendekati kesetimbangan maka produk yang akan dominan adalah B. di bawah kondisi tersebut, C yang mula-mula terbentuk akan kembali ke A, sementara B yang lebih stabil tidak berkurang banyak. Maka dikatan bahwa produk terkontrol secara termodinamik (thermodynamically controlled). Tentu saja table diatas tidak menggambarkan semua reaksi dalam mana senyawa A dapat memberikan dua produk. Di dalam banyak hal, produk yang lebih stabil adalah juga merupakan produk lebih cepat terbentuk. Di dalam hal yang demikian, produk kontrol kinetik adalah juga produk kontrol termodinamika.

Hubungan Energi Bebas Linear Dan Efek Substituent
Untuk terjadinya reaksi secara spontan, energi bebas produk harus lebih rendah daripada energi bebas reaktan, yakni ΔG harus negatif. Reaksi dapat saja berlangsung melalui jalan lain, tapi tentu saja hanya jika energi bebas ditambahkan. Energi bebas terbuat dari dua komponen yaitu entalpi ΔH dan entropi ΔS. Kuantitas tersebut dihubungkan dengan persamaan:


ΔG = ΔH – TΔS
 



Oleh karena itu karena kontrol termodinamika dan kontrol kinetika sangat berkaitan dengan intermediate dan dalam menghasilkan produk  salah satu diantaranya adalah Reaksi Karbonil yang sangat diperlukan dalam Reaksi Sintesis Senyawa Organik.

Rabu, 04 Desember 2013

Teori asam basa Bronsted–Lowry



Dalam kimia, teori Brønsted-Lowry adalah teori mengenai asam basa yang digagaskan oleh Johannes Nicolaus Brønsted dan Thomas Martin Lowry pada tahun 1923 secara terpisah.[1][2] Dalam teori ini, asam Brønsted didefinisikan sebagai sebuah molekul atau ion yang mampu melepaskan atau "mendonorkan" kation hidrogen (proton, H+), dan basa Brønsted sebagai spesi kimia yang mampu menarik atau "menerima" kation hidrogen (proton).

Air sebagai asam maupun basa. Satu molekul H2O berperan sebagai basa dan menerima H+ menjadi H3O+; H2O yang lainnya berperan sebagai asam dan melepaskan H+ menjadi OH-.

Ciri-ciri asam dan basa Brønsted–Lowry

Ketika sebuah senyawa yang berperilaku seperti asam mendonorkan proton, haruslah terdapat basa yang menerima proton tersebut. Sehingga konsep asam basa Brønsted–Lowry dapat didefinisikan sebagai reaksi:
Asam + Basa is in equilibrium with basa konjugat + asam konjugat.
Basa konjugat adalah ion atau molekul yang dihasilkan setelah asam kehilangan protonnya, sedangkan asam konjugat adalah spesi yang dihasilkan ketika basa menerima proton. Reaksi ini bersifat reversibel dan dapat berjalan terbalik maupun ke depan.
Air bersifat amfoterik dan berperilaku sebagai asam maupun basa. Dalam reaksi asam asetat (CH3CO2H) dengan air (H2O), air berperan sebagai basa.
CH3COOH + H2O is in equilibrium with CH3COO- + H3O+
Ion asetat, CH3CO2-, adalah basa konjugat dari asam asetat, dan ion hidronium, H3O+, adalah asam konjugat dari air.
Air juga dapat berperan sebagai asam. Ketika bereaksi dengan amonia:
H2O + NH3 is in equilibrium with OH- + NH4+
H2O mendonorkan proton kepada NH3. Ion hidroksida adalah basa konjugat dari air yang berperan sebagai asam, sedangkan ion amonium adalah asam konjugat dari basa amonia.


Hubungan antara teori Bronsted-Lowry dan teori Arrhenius
Teori Bronsted-Lowry tidak berlawanan dengan teori Arrhenius – Teori Bronsted-Lowry merupakan perluasan teori Arrhenius.
Ion hidroksida tetap berlaku sebagai basa karena ion hidroksida menerima ion hidrogen dari asam dan membentuk air.
Asam menghasilkan ion hidrogen dalam larutan karena asam bereaksi dengan molekul air melalui pemberian sebuah proton pada molekul air.
Ketika gas hidrogen klorida dilarutkan dalam air untuk menghasilkan asam hidroklorida, molekul hidrogen klorida memberikan sebuah proton (sebuah ion hidrogen) ke molekul air. Ikatan koordinasi (kovalen dativ) terbentuk antara satu pasangan mandiri pada oksigen dan hidrogen dari HCl. Menghasilkan ion hidroksonium, H3O+.
Ketika asam yang terdapat dalam larutan bereaksi dengan basa, yang berfungsi sebagai asam sebenarnya adalah ion hidroksonium. Sebagai contoh, proton ditransferkan dari ion hidroksonium ke ion hidroksida untuk mendapatkan air.
Tampilan elektron terluar, tetapi mengabaikan elektron pada bagian yang lebih dalam
 Dari pandangan model Brønsted, reaksi antara asam dan basa selalu melibatkan pemindahan ion H+ dari donor proton ke akseptor proton. Asam bisa merupakan molekul yang netral.
HCl(g) + NH3(aq) → NH4+(aq) + Cl(aq)
Bisa ion positif
NH4+(aq) + OH(aq) → NH3(aq) + H2O(l)
Atau ion negatif
H2PO4(aq) + H2O(l) → HPO42–(aq) + H3O+(aq)
Senyawa yang mengandung hidrogen dengan bilangan oksidasi +1 dapat menjadi asam. Yang termasuk asam Brønsted adalah HCl, H2S, H2CO3, H2PtF6,  NH4 +, HSO4- , and HMnO4. .Basa Brønsted dapat diidentifikasi dari struktur Lewis. Berdasarkan model Brønsted, sebuah basa adalah ion atau molekul yang dapat menerima proton. Untuk memahami pengertian ini, lihat pada bagaimana suatu basa seperti ion OH menerima proton.
H2PO4- (aq) + H2O(l) → HPO42–(aq) + H3O+(aq)
Untuk membentuk ikatan kovalen dengan ion H+ yang tidak memiliki electron valensi, harus tersedia dua elektron untuk membentuk sebuah ikatan. Maka, hanya senyawa yang memiliki pasangan elektron bebas, yang dapat bertindak sebagai akseptor ion H+ atau basa Brønsted.
Model Brønsted menambah jenis zat yang dapat bertindak sebagai basa, baik yang berbentuk ion ataupun molekul, selama senyawa tersebut memiliki satu atau lebih pasangan elektron valensi tak berikatan dapat menjadi basa Brønsted.
Teori Brønsted menjelaskan peranan air pada reaksi asam-basa. Air terdisosiasi membentuk ion dengan mentransfer ion H+ dari salah satu molekulnya yang bertindak sebagai asam ke molekul air lain yang bertindak sebagai basa.
H2O(l) + H2O(l) → H3O+(aq) + OH(aq)
Asam      basa
Asam bereaksi dengan air dengan mendonorkan ion H+ pada molekul air yang netral untuk membentuk ion H3O+.
HCl(g) + H2O(l) → H3O+(aq) + Cl(aq)
asam      basa
Karena reaksi asam basa merupakan reaksi yang reversibel, bagian yang terbentuk ketika suatu asam kehilangan proton cenderung bersifat basa, dan bagian yang menerima proton cenderung bersifat asam. Sebuah asam dan sebuah basa yang dihubungkan oleh sebuah proton disebut pasangan asam basa konjugasi.
H –   A +   :B → B – H+ + A
Asam         Basa    Asam     Basa
Sehingga pada:
H2O(l) + H2O(l) →H3O+(aq) + OH(aq)
Asam     Basa        Asam             Basa
Terdapat pasangan asam basa konjugasi: H2O – OH- dan H3O+- H2O, juga
dalam reaksi pelarutan HCl:
HCl(g) + H2O(l) →H3O+(aq) + Cl(aq)
Asam     Basa       Asam            Basa
dengan pasangan asam basa konjugasi: HCl-Cl- dan H3O+- H2O
Model Brønsted bahkan dapat diperluas untuk reaksi yang tidak terjadi dalam larutan. Contoh yang paling klasik adalah reaksi antara gas hidrogen klorida dengan uap amoniak membentuk amonium klorida.Reaksi ini mencakup transfer ion H+ dari HCl ke NH3 dan kemudian reaksi asam basa terjadi melalui fasa gas. Namun teori asam basa Brønsted-Lowry ini tidak dapat menjelaskan bagaimana suatu reaksi asam basa dapat terjadi tanpa adanya transfer proton dari asam ke basa. Kekurangan ini kemudian mendorong peneliti lain, yaitu G.N. Lewis untuk mendefinisikan lebih lanjut asam dan basa ini
Sang Ilmuwan
JOHANNES NICOLAUS BRØNSTED 1879- 1947)
ahir pada 22 Februari pada tahun 1879 di West Jutland Denmark. Brønsted, merupakan ahli kimia fisik yang dikenal dengan konsep asam basanya. merupakan perumus sifat katalik dan kekuatan asam basa. Ia sangat tertarik mempela ari termodinamika,dan men adi perintis studi termodinamika tentang interkonversi modifikasi belerang, namun ia juga menger akan penelitian dalam bidang larutan  lektrolit. Pada tahun 1903 ia menikah dengan Charlotte Lou se Warberg, yang merupakan ahli teknik perempuan pertama yang ada di Denmark
 

Teori Asam dan Basa Arrhenius

Menurut Arrhenius,
Asam adalah zat yang apabila dilarutkan dalam air dapat menghasilkan ion H+. Akibat kelebihan ion H+ maka air yang sudah ditambahkan zat asam disebut sebagai larutan asam.
reaksi ionisasi zat asam dalam air adalah sebagai berikut:

Berikut adalah tabel yang menyajikan berbagai jenis asam dan reaksi ionisasinya.

Basa adalah zat yang apabila dilarutkan dalam air dapat menghasilkan ion OH-. Akibat kelebihan ion OH- maka air yang sudah ditambahkan zat basa disebut sebagai larutan basa.
reaksi ionisasi zat basa dalam air adalah sebagai berikut:

Berikut adalah tabel yang menyajikan berbagai jenis basa dan reaksi ionisasinya.



Teori Asam Basa Lewis


Asam Lewis didefinisikan sebagai spesi yang menerima pasangan elektron.
Basa Lewis didefinisikan sebagai spesi yang memberikan pasangan elektron.
Sehingga H+ adalah asam Lewis, karena ia menerima pasangan elektron, sedangkan OH- dan NH3 adalah basa Lewis, karena keduanya adalah penyumbang pasangan elektron. Yang menarik dalam definisi asam Lewis adalah, terdapat senyawa yang tidak memiliki hidrogen dapat bertindak sebagai asam. Contoh, molekul BF3. Jika kita menentukan struktur Lewis dari BF3, tampak B kurang dari oktet dan dapat menerima pasangan elektron., sehingga dapat bertindak sebagai asam Lewis Dalam kenyataan molekul yang tidak mencapai oktet sering merupakan asam Lewis yang kuat karena molekul tersebut dapat mencapai konfigurasi oktet dengan menerima pasangan elektron tak berikatan. Senyawa yang termasuk dalam perioda yang lebih bawah dari perioda dua dapat bertindak sebagai asam Lewis sangat baik, dengan memperbanyak susunan valensi terluar mereka. Akibatnya, SnCl4 bertindak sebagai asam Lewis berdasarkan  reaksi berikut:
SnCl4  +   2Cl-( aq)  →   SnCl 62-
Atom pusat dikelilingi 12 elektron valensi, elektronnya menjadi lebih banyak dari 8.


nh3 bf3 dot electron lewis

Di dalam kulit valensi atom pusat N dalam molekul NH3, terdapat tiga pasang elektron ikatan (N-H) dan satu pasang elektron menyendiri, sedangkan untuk atom pusat B alam molekul BF3 terdapat tiga pasang elektron ikatan (B-F). Sepasang elektron menyendiri atom elektron non bonding ini dapat disumbangkan kepada atom pusat B untuk kemudian dimiliki bersama-sama, Dengan demikian terjadi ikatan kovalen koordinat B-N dan struktur yang terjadi berupa dua bangun tetrahedron bersekutu pada salah satu sudutnya.

Banyak dijumpai reaksi asam-basa Lewis yang paralel dengan reaksi asam-basa Brønsted-Lowry dan diantaranya berlangsung dalam pelarut bukan air. Cairan murni yang dapat terukur hantaran listriknya misalnya bromin trifluorida, BrF3, tentu mengandung ion-ion. Spesies ini mengalami swa-ionisasi dengan menghasilkan kation BrF2+ dan anion BrF4- menurut persamaan reaksi:
2 BrF3 (l) BrF2+ (BrF3 ) + BrF4- (BrF3 ) (aq)
Spesies [BrF2][SbF6] dan Ag[BrF4] telah berhasil ditemukan, dan dalam sistem pelarut cairan BrF3 (l) masing-masing bersifat asam dan basa. Oleh karena itu keduanya bereaksi menurut reaksi netralisasi Lewis sebagai berikut:
[BrF2][SbF6]  (BrF3 ) + Ag[BrF4] Ag[SbF6] (BrF3 ) + 2 BrF3 (l)
pertanyaan :

1. bagaimanakah aturan oktet asam basa lewis pada senyawa BF3
jawaban:
 olekul BF3. Jika kita menentukan struktur Lewis dari BF3, tampak B kurang dari oktet dan dapat menerima pasangan elektron., sehingga dapat bertindak sebagai asam Lewis

Dalam kenyataan molekul yang tidak mencapai oktet sering merupakan asam Lewis yang kuat karena molekul tersebut dapat mencapai konfigurasi oktet dengan menerima pasangan elektron tak berikatan

2. bagaimanakah menetukan senyawa yang bersifat asam?
jawaban:
Asam merupakan salah satu penyusun dari berbagai bahan makanan dan minuman, misalnya cuka, keju, dan buah-buahan. Menurut Arrhenius, asam adalah zat yang dalam air akan  melepaskan ion H+. Jadi, pembawa sifat asam adalah ion H+ (ion hidrogen), sehingga rumus kimia asam selalu mengandung atom hidrogen. Ion adalah atom atau sekelompok atom yang bermuatan listrik. Kation adalah ion yang bermuatan listrik positif. Adapun anion adalah ion yang bermuatan listrik negatif.
Sifat khas lain dari asam adalah dapat bereaksi dengan berbagai bahan seperti logam, marmer, dan keramik. Reaksi antara asam dengan logam bersifat korosif. Contohnya, logam besi dapat bereaksi cepat dengan asam klorida (HCl) membentuk Besi (II) klorida (FeCl2)

3. mengapa kekuatan asam di pengaruhi  oleh banyaknya ion2 H+ ?
jawaban :
ion – ion H+ yang dihasilkan
oleh senyawa asam dalam larutannya. Berdasarkan banyak sedikitnya ion H+
yang dihasilkan, larutan asam dibedakan menjadi dua macam sebagai berikut.
1. Asam Kuat
Asam kuat yaitu senyawa asam yang dalam larutannya terion seluruhnya
menjadi ion-ionnya
2. Asam Lemah
Asam lemah yaitu senyawa asam yang dalam larutannya hanya sedikit
terionisasi menjadi ion-ionnya. Reaksi ionisasi asam lemah merupakan reaksi
kesetimbangan.